ORIGINAL ARTICLE

Vapor phase fabrication of three-dimensional arrayed Bil₃ nanosheets for cost-effective solar cells

Qianpeng Zhang^{1,2} | Matthew Kam^{1,2} | Swapnadeep Poddar^{1,2} | Yivi Zhu^{1,2} Shijun Liang³ | Pengfei Qi⁴ | Feng Miao³ | Zhiyong Fan^{1,2} Leilei Gu^{1,2}

¹HKUST-Shenzhen Research Institute, Shenzhen, China

²Department of Electronics and Computer Engineering, Hong Kong University of Science and Technology (HKUST), Hong Kong, SAR, China

³National Laboratory of Solid State Microstructures, School of Physics, School of Electronic Science and Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, China

⁴Zhong Shan Rui Ke New Energy Co. Ltd., Zhongshan, Guangdong, China

Correspondence

Zhiyong Fan, HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China. Email: eezfan@ust.hk

Funding information

General Research Fund, Grant/Award Number: 16237816: National Kev Basic Research Program of China, Grant/Award Number: 2015CB921600; National Natural Science Foundation of China, Grant/ Award Numbers: 51672231, 61574076; Natural Science Foundation of Jiangsu Province, Grant/Award Number: BK20180330; the Science and Technology Plan of Shenzhen, Grant/Award Number: JCYJ20170818114107730

1 INTRODUCTION

Solar energy is one of the most abundant sustainable energy resources in the world. Despite years of research, searching for a cost-effective, efficient, nontoxic, and air-stable

Abstract

Multilayered photovoltaic absorbers have triggered widespread attention for their unique structure and properties. However, multilayered materials in the randomly oriented polycrystalline thin-film lead to ineffective carrier transport and collection, which hinders the process of achieving high-performance solar cells. Herein, this issue is tackled by producing the three-dimensional (3D) heterojunction BiI₃ nanosheets (NSs) solar cells, which embed vertically aligned monocrystalline BiI₃ NSs into spiro-OMeTAD. The preferred orientation of BiI₃ NSs and large p-n junction areas of 3D heterojunction structure enable a strong light absorption and effective carrier transport and collection, and thus a power conversion efficiency (PCE) of 1.45% was achieved. Moreover, this PCE is the highest ever reported for Bil₃ based solar cells to our best knowledge. Moreover, the nonencapsulated device remained 96% of the initial PCE after 24 h continuous one sun illumination at ~70% humidity condition, and 82% of the initial PCE after 1-month storage at ~30% humidity condition.

KEYWORDS

3D solar cells, BiI₃, multilayered semiconductors

alternative photovoltaic absorber is still the key to achieve the new-generation high-performance solar cells. One of the promising candidates is BiI₃, which is a layered heavy metalsemiconductor previously investigated for X-ray imaging and gamma-ray detection.¹⁻³ Until recently, Bil₃ caught

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2019 The Authors. InfoMat published by John Wiley & Sons Australia, Ltd on behalf of UESTC.

researchers' attention for photovoltaic application due to the proper bandgap (1.43-2.2 eV),⁴ high absorption coefficient (10^{5} cm^{-1}) ,⁵ high electron mobility $(200 \pm 50 \text{ cm}^{2} \text{ V}^{1} \text{ s}^{-1})$,⁶ and low carrier concentration (10^8 cm^{-3}) .⁷ BiI₃ molecule is constructed by repeating the unit of the I-Bi-I plane. Strong ionic I-Bi bond and weak van der Waals I-I interaction exist within each plane and in between planes, respectively.⁸ Primarily because of its layer-by-layer structure, Bil₃ exhibits interesting anisotropic electronic and optical properties.⁹ The valence band maximum (VBM) is dominated by I-p states, and the conduction band minimum (CBM) is mainly contributed by I-p and Bi-p states.^{4,10} For the VBM and CBM that are parallel to the I-Bi-I plane,^{4,10} carriers are mobile within planes but immobile across planes. Meanwhile, Bil₃ exhibits highly asymmetric carrier mobilities. Brandt et al¹¹ reported the effective hole and electron masses of BiI₃ to be 10.39 and 1.85, respectively. The electron mobility is 27.7 times higher than hole mobility.^{1,12} Due to the above properties, the carrier transport and collection in the randomly oriented polycrystalline BiI₃ thin-film are not effective,¹³ which leads to the inferior photovoltaic performance. Until now, the bestreported PCEs for Bil₃ solar cells are still lower than 1.1%. For instance, Lehner et al¹⁴ applied Bil₃ for a heterojunction planar solar cell and achieved a PCE around 0.3%. Hamdeh et al¹⁵ explored solution-processed BiI₃ based solar cells with 0.09% PCE and observed the improved performance of 1.02% PCE with solvent vapor annealing.

To tackle the issues discussed above, the BiI₃ should be synthesized as vertically aligned nanosheets (NSs) along the preferential alignment direction of I-Bi-I planes.¹³ Moreover, the naturally passivated surface of Bil₃ NSs alleviates surface recombination.¹⁶ However, controllable mass production of Bil₃ NSs for solar cells was limited by the intricate transfer process of NSs.¹⁷⁻¹⁹

Here, we demonstrated a 3D heterojunction structure. The vertically aligned monocrystalline Bil₃ NSs grown on SnO_2/FTO glass were embedded into 2.2', 7.7'-tetrakis-(N, *N*-di-4-methoxyphenylamino)-9,9'-spirobifluorene) (spiro-OMeTAD). Notably, our work shows the ability to synthesize the monocrystalline Bil₃ NSs with controlled grain size. Importantly, we developed a cost-effective, scalable, and transfer-free process in this work, and achieved a PCE of 1.45% which is the highest reported to our best knowledge. Moreover, the strategy developed in this work can also be applied to other multilayered materials such as graphene,²⁰⁻²² 2D perovskites,²³⁻²⁸ and transition metal dichalcogenides.²⁹⁻³²

RESULTS AND DISCUSSIONS 2

Figure 1A shows a diagram of the device fabrication process. A detailed process can be found in Section 4. BiI₃

NSs were directly grown by the vapor-solid-solid (VSS) reaction between Bi and I₂, which ensures a high material quality.^{33,34} Figure 1A shows a cross-sectional schematic diagram of BiI₃ NSs cell. Figure 1C shows the band-energy diagram of the complete device. Band energy levels of SnO₂,³⁵ BiI₃,¹⁴ and spiro-OMeTAD³⁶ were all found in the literature. Because of the electrons dominated carrier transport behavior of Bil₃, the orthogonalization of electron and hole collection in 3D heterojunction structure enables a more efficient separation and collection.^{37,38} Besides, as carriers are mobile within I-Bi-I planes but immobile across planes in BiI₃, the vertically aligned orientation facilities carrier transport in the device.¹³ Moreover, the narrow width of BiI₃ NSs enables more effective separation of electron-hole pairs into free carriers, especially for the short carrier lifetime photovoltaic absorbers like BiI₃.³⁷

The scanning electron microscopy (SEM) image in Figure 2A shows the morphology of BiI₃ NSs from the precursor (30 nm Bi) grown on the substrate. The Bil₃ NSs were uniformly distributed and vertically aligned with lateral size ranging from 200 to 400 nm and thickness around 50 nm. Figure 2B shows a tilted angle (60°) SEM image of Bil₃ NSs with a height of around 260 nm. Figure 2C and Figure S1 show the SEM images of Bil₃ embedded in the spiro-OMeTAD. Figure 2D is the transmission electron microscopy (TEM) image, which reveals a hexagonal NS structure with clear lattice fringes, confirming a monocrystalline nature of Bil₃ NSs. Figure 2E is the enlarged view that shows the lattices spacing of 3.7 Å between (110) planes. The selected area electron diffraction pattern in Figure 2F exhibits diffraction spots in a hexagonal symmetry, which also indicates the high crystallinity.18,39

The epitaxial growth of NSs involves many complex processes, for instance, the decomposition of the precursor, the diffusion of reactant, the atomic structure of the surface and the adsorption and desorption of atoms at growth front, and so forth.⁴⁰ Compared with the typical horizontally oriented NSs, we attributed the synthesis of vertically aligned Bil₃ NSs to the edge-growth mechanism and growth competition among different orientated Bil₃ NSs. The Bi precursor is a layer of uniformly distributed nanoparticles (Figure S2a). Equation 1 shows the chemical reaction between indium vapor and solid-state Bi nanocrystal⁴¹ at 100°C. The growth is by the VSS mechanism. The schematic of the Bil₃ NSs formation process is explicated in Figure S3. Because I-Bi-I layers are dangling-bond-free surfaces and cannot serve as effective nucleation sites for lateral epitaxy, the Bil₃ formation process follows an edge-growth mechanism and NSs were synthesized. Furthermore, for the indium diffusivity in the solid-state Bi-metal is not efficient at 100°C, the

FIGURE 1 Diagram of the device fabrication process: (A1) cleaning of FTO glass, (A2) sputtering of SnO₂, (A3) evaporation of Bi, (A4) VSS growth of Bil₃ NSs, (A5) deposition of Spiro-OMeTAD and (A6) deposition of top contact. (B) Cross-sectional schematic diagram of BiI₃ NSs cell. (C) Band-energy diagram of the complete device

diffusion process is the control step.42,43 Depicted in Figure S3, the horizontal-aligned Bil₃ NSs at the surface of the Bi precursor hinders the diffusion process, with a result, the supply of indium is not as sufficient as the vertically aligned NSs. Consequently, the horizontal-aligned Bil₃ NSs has the slowest growth rate, and vertically aligned orientation is the dominated orientation.

$$2\mathrm{Bi}\,(\mathrm{s}) + 3\mathrm{I}_2(\mathrm{g}) \to 2\mathrm{Bi}\mathrm{I}_3(\mathrm{s}). \tag{1}$$

The NSs grain size is always associated with the synthesis condition, for instance, the precursor thickness, temperature, reaction time, and so forth.⁴³ In this work, vertically aligned Bil₃ NSs were synthesized under different conditions. The results show that the temperature variation (90°C-110°C) and reaction time (1-3 h) do not have a great impact on the BiI₃ NSs grain size, the related discussion can be found in Figures S4 and S5. However, shown in Figure S2, the Bil₃ grain size increased with the raise of precursor thickness. This implies that the final grain size is determined by the amount of the precursor in the I-rich growth condition, which can be indicated by the Bi thickness.⁴⁴ More importantly, the preferred orientation is independent of precursor thickness, which was also verified by both the SEM (Figure S2) and X-ray diffraction (XRD) (Figure 3A) results. Therefore, the crystal size can be precisely controlled by the Bi thickness. The controlled morphology of vertically aligned Bil₃ NSs enables a future study of NSs geometry effect on device performance.33,34

3

To study the crystal structure of BiI₃ NSs, the XRD patterns of as-grown BiI₃ NSs with different Bi precursor thicknesses on the SnO₂/FTO substrate were characterized. As shown in Figure 3A, the XRD patterns match well with the mixed peaks of tetragonal structure of SnO_2 (Space-group: P42/mnm(136) with lattice constants of a = 4.75 Å, c = 3.20 Å) and hexagonal structure of BiI₃ (PDF no. 48-1795, Space-group:R-3(148) with lattice constants of a = 7.52 Å and c = 20.72 Å).^{45,46} The XRD patterns from different precursor thicknesses all show a higher relative intensity of diffraction peak from the (300) plane at 41.57° compared to that of the BiI₃ powder reference. The I-Bi-I plane stacked along the [003] direction, the results confirm that BiI₃ NSs were in the

FIGURE 2 (A) Top-view SEM images of BiI₃, (B) Tilted-angle view (60°) SEM image of BiI₃ NSs, (C) Cross-sectional SEM images of (from bottom to top) FTO/SnO₂/BiI₃ NSs/Spiro-OMeTAD, (D) TEM image of BiI₃ NSs, (E) Zoomed-in image of the red dash rectangular area in (D), (F) SAED pattern of BiI₃ NSs (FFT filtered images)

preferential alignment of I-Bi-I plane, which is perpendicular to the substrate.⁴⁷ Besides, the low diffraction background and sharp diffraction peaks indicate the high crystallinity of BiI₃ NSs, and no redundant diffraction peak is observed.

4

 \perp WILEY.

The bandgap of Bil₃ has been determined both experimentally and computationally with values ranging from 1.43 to 2.2 eV.⁴ UV-visible spectrophotometry was performed for Bil₃ NSs on the glass. As extrapolated in the Tauc plot in Figure 3B, the BiI₃ NSs is an indirect bandgap material ($E_{\rm g} \sim 1.74 \pm 0.05$ eV), which agrees with the experimental results^{48,49} and first principle analysis.⁴⁹ Depicted in Figure 3B and Figure S6, there is an enhanced light absorption from the antireflection effect. The average refection of BiI₃ NSs based on 20, 30, 40 nm Bi precursor over 400-900 nm range are 14.5%, 3.0%, and 2.4%, respectively. The corresponding reflection spectra are plotted in Figure S6. Moreover, the average refection of BiI₃ (Bi 30 nm) is one order of magnitude lower than that of the planar BiI₃¹⁵ The anti-reflection property is attributed to the light trapping nature of the NSs. Related discussion can be found with optical simulation results shown in Figure S7. Moreover, the anti-reflection effect enhanced with the increase of precursor Bi thickness, which is caused by the improved filling ratio and the increased height of BiI_3 NSs (Figure S2). The absorption of BiI_3 (Bi 30 nm) reached as high as 95% at wavelength below 650 nm and has a clear cutoff at 670 nm and no sub-bandgap or impurity absorption signal is observed.

Figure 3C,D shows the photoluminescence (PL) and time-resolved photoluminescence (TRPL) of BiI₃ NSs, respectively. The PL spectra were obtained with 514 nm excitation, and a PL peak at 670 nm was observed. The TRPL of BiI₃ NSs (red dots) was obtained with 365 nm excitation, and the instrumental response function is shown with black dots. With the mono-exponential fitting, the effective lifetime was estimated to be within the range from $\tau \sim 0.54$ to 0.56 ns (Figure 3D and Figure S8). The effective carrier lifetime is consistent with the previous report.^{11,15,49}

Moreover, solar cell devices with $FTO/SnO_2/BiI_3$ NSs/spiro-OMeTAD/Au structure were fabricated. Figure 4A shows the current density-voltage (*J-V*) curves and the external quantum efficiency (EQE) of champion devices, and the device performances are summarized in Table S1. The champion device based on 30 nm Bi film demonstrated the highest PCE of 1.45% with a shortcircuit current density (J_{sc}) of 6.36 mA cm⁻², an opencircuit voltage (V_{oc}) of 0.47 V, and a fill factor (FF) of 48.52%. Additionally, the device shows EQE values

FIGURE 3 (A) X-ray diffraction patterns of (from bottom to top) $FTO/SnO_2/BiI_3$ (BiI₃ based on different precursor Bi thickness), (B) UV-vis absorption spectra and T_{auc} plot of glass/BiI₃ (BiI₃ based on different precursor Bi thickness), (C) the Steady-state photoluminescence (PL) spectra, (D) Time-resolved photoluminescence spectrum of BiI₃

between 30% and 39% at a wavelength range from 400 to 650 nm. The calculated J_{sc} from EQE spectra was 6.02 mA cm^{-2} . Moreover, from the EQE spectra, there is a poor photo-generated carrier extraction of higherenergy photons. This implies the recombination of electron-hole pairs for higher-energy photons that preferentially absorbed at the SnO₂/BiI₃ interface.¹⁵ The EQE result suggests a need for interface engineering to enhance the performance of the BiI₃ solar cell. A possible strategy is to insert a buffer layer (such as CdS,⁵⁰ CuInS₂,⁵¹ or ZnS⁵²) between SnO₂ and BiI₃ to overcome the low electron collection. In Figure 4A, the low dark saturated current at low bias indicates less trap-assisted recombination in 3D devices compared with the polycrystalline thin film counterpart.^{16,53,54} The less trap-assisted recombination is due to the reason that the selfpassivated surface of vertically aligned Bil₃ suppressed the carrier recombination at the BiI₃/spiro-OMeTAD interface. Notably, our devices show the highest reported PCE based on BiI₃ to our best knowledge, and the comparison of our work and other reported work is shown in Table S2. The enhanced performance is attributed to less

trap-assisted recombination in the superior crystallinity BiI₃, and a more efficient photogenerated carrier separation and collection in the 3D device.^{13,24} In addition, the light-trapping structure of 3D arrayed BiI₃ NSs minimizes the number of unabsorbed photons and therefore enhances the photocurrent.⁵⁵

Figure 4B shows the precursor thickness effect on the device performance and the photographs of the corresponding device are shown in Figure S9. The BiI₃ NSs solar cell based on 20 nm Bi exhibited a PCE of 0.62% $(J_{\rm sc} = 2.92 \text{ mA cm}^{-2}, V_{\rm oc} = 0.44 \text{ V}, \text{ and FF} = 48.42\%)$. Its lower PCE than the champion device was attributed to the less light absorption. However, as shown in Figure 4B and Table S3, a decrease of PCE was observed when Bi thickness surpassed 30 nm.

Besides the PCE, device stability is another essential concern for practical application. As the grain boundary provides charge accumulation sites and infiltration pathways for moisture and oxygen, they become the most vulnerable sites for device degradation.³⁹ Thanks to the self-passivated surface and monocrystalline nature of BiI₃ NSs, the NSs device showed decent stability. Figure 4C is

FIGURE 4 (A) *J-V* characteristic and external quantum efficiency (EQE) of the best-performing BiI₃ solar cells with device area of 0.0314 cm², (B) *J-V* characteristic of BiI₃ solar cells based on different Bi thickness, (C) The PCE stability of a high-performance BiI₃ solar cell without encapsulation stored in a desiccator with humidity of $30 \pm 5\%$, and (D) stability tests of BiI₃ solar cells exposed in continuous AM1.5G illumination (100 mW cm⁻²) for 24 h in the ambient condition with a humidity of $70 \pm 5\%$

a long-term stability test of the champion device stored in a desiccator with humidity $30 \pm 5\%$ without encapsulation. Moreover, the devices were tested in an ambient environment at 25°C and with 60-90% humidity, maintained 82% of its initial PCE after 30 days. Most importantly, the BiI₃ NSs device also exhibits extraordinary stability under continuous light saturation conditions. Figure 4D shows that the tested devices without packaging remained 96% of its initial PCE after 24 h of continuous AM1.5G illumination (100 mW cm⁻²) in the ambient condition with a high humidity of $70 \pm 5\%$. These results demonstrate that BiI₃ NSs are air-stable and can be a competitive choice for the photovoltaic light absorber.

3 | CONCLUSIONS

6

In summary, we reported the 3D heterojunction BiI_3 NSs solar cells with the highest PCE of 1.45% to our best knowledge, and we attributed the high performance to the superior crystallinity of BiI_3 and the efficient photogenerated carrier separation and collection in the

3D device. Our study demonstrates the capability of synthesizing high crystallinity monocrystalline BiI₃ NSs with a controlled grain size. More significantly, our BiI₃ solar cell showed decent stability. The nonencapsulated device remained 96% of its initial PCE after 24 h of continuous (AM1.5G) illumination and 82% after month storage in $30 \pm 5\%$ humidity. With the knowledge gained in this work, BiI₃ proves its strong potential for less toxic, efficient and long-term stable solar cells. Moreover, the vapor growth strategy developed here can also be widely used for other multilayered materials.

4 | EXPERIMENTAL SECTION

4.1 | Substrate preparation

The BiI₃ NSs solar cells were fabricated on FTO glass, which was ultrasonically cleaned by detergent, acetone, isopropanol, and deionized water in sequence. After blowing dry the substrate with N₂, 40 nm thick SnO₂ was sputtered as the electron transport layer with a deposition rate of 0.6 Å s⁻¹. The DC sputtering uses an Sn target and

a gas flow rate of 5 sccm O_2 and 50 sccm Ar at 60 W power. After that, Bi-metal with different thicknesses was thermally evaporated with a deposition rate of 1 Å s⁻¹.

4.2 | Vapor phase growth of BiI₃ NSs

The growth of BiI₃ NSs was a vapor-solid-solid reaction carried out in a furnace (OTF 1200X-II, MTI) with a quartz tube. The as-prepared substrates and iodine powder were placed into two small quartz containers at the center of the quartz tube. The iodine powder was spread uniformly inside one quartz container, and the substrate was placed close to the opening end of another container. Thereafter, the growth was performed at 100°C for 1 h with the Ar flow rate of 300 sccm. Iodine vapor is transported toward the sample by Ar gas. After growth, the samples were transferred into a nitrogen-filled glove box.

4.3 | Hole transport layer and topcontact depositions

To embed the BiI₃ NSs into the hole transport layer, a solution of spiro-OMeTAD (80 mg mL⁻¹ chlorobenzene) was spin-coated at 1500 rpm for 30 s. After that, 100 nm-thick gold was thermally evaporated at a rate of 1 Å s⁻¹ as the top electrode.

4.4 | Characterization

The as-grown Bil₃ NSs were characterized by the XRD (Bruker D8 X-ray Diffractometer, USA) utilizing Cu Ka radiation, TEM (JEOL [2010F] under an accelerating voltage of 200 V), and scanning electron microscopy (FESEM, JEOL JSM-7100F, TESCAN VEGA3). Ultraviolet-visible spectroscopy (Varian Cary 500) was used to obtain the absorption and reflection spectra. PL and TRPL were measured with an FS5 fluorescence spectrometer. Carrier lifetime was convolved with monoexponential decay fittings. The device performance was measured with an AM[©] solar simulator (Abet Class AAB Sun 2000, calibrated by a KG5-filtered Si reference cell). The current density-voltage (J-V) curves were measured with a Keithley 2400. To calculate the EQE, the photocurrent under monochromatic illuminations at different wavelengths was measured by using a 150 W xenon lamp and a monochromator.

ACKNOWLEDGMENTS

This work was supported by the Science and Technology Plan of Shenzhen (JCYJ20170818114107730), National Natural Science Foundation of China (Project No. 51672231), The General Research Fund (Project No. 16237816) from the Hong Kong Research Grant Council, Natural Science Foundation of Jiangsu Province (Project No. BK20180330), National Natural Science Foundation of China (Project No. 61574076), and National Key Basic Research Program of China (Project No. 2015CB921600).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Zhiyong Fan ^b https://orcid.org/0000-0002-5397-0129

REFERENCES

- Lintereur AT, Qiu W, Nino JC, Baciak JJNI. Characterization of bismuth tri-iodide single crystals for wide band-gap semiconductor radiation detectors. *Nucl Instrum Methods Phys Res Sect* A. 2011;652(1):166-169.
- Matsumoto M, Hitomi K, Shoji T, Y H. Bismuth tri-iodide crystal for nuclear radiation detectors. *IEEE Trans Nucl Sci.* 2002; 49(5):2517-2520.
- 3. Owens A. Semiconductor materials and radiation detection. *J Synchrotron Radiat.* 2006;13(2):143-150.
- Podraza NJ, Qiu W, Hinojosa BB, et al. Band gap and structure of single crystal BiI₃: resolving discrepancies in literature. *J Appl Phys.* 2013;114(3):033110.
- Jellison G, Ramey J, Boatner LA. Optical functions of BiI₃ as measured by generalized ellipsometry. *Phys Rev B*. 1999;59(15):9718.
- Zhang W-B, Xiang L-J, H-B L. Theoretical perspective of energy harvesting properties of atomically thin BiI₃. *J Mater Chem A*. 2016;4(48):19086-19094.
- Ikeda M, Oka Y, Mori K, Atsuta M. Study of dark current blocking layer for BiI/sub 3/X-ray detector film. Paper presented at: Nuclear Science Symposium Conference Record, IEEE 2004, 2004.
- Wyckoff RWG. Crystal Structures. Vol 1. New York: Interscience; 1963:796-797.
- Geim AK, Grigorieva IVJN. Van der Waals heterostructures. Nature. 2013;499(7459):419.
- Yan H, Ziyu H, Xu G, Xiaohong SJCPL. Structural, electronic and photocatalytic properties of atomic defective Bil₃ monolayers. *Chem Phys Lett.* 2018;691:341-346.
- 11. Brandt R, Kurchin RC, Hoye R, et al. Investigation of bismuth triiodide (Bil(3)) for photovoltaic applications. *J Phys Chem Lett.* 2015;6(21):4297-4302.
- 12. Ma F, Zhou M, Jiao Y, et al. Single layer bismuth iodide: computational exploration of structural, electrical, mechanical and optical properties. *Sci Rep.* 2015;5:17558.
- Xiao Z, Meng W, Wang J, Mitzi DB, Yan YJMH. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. *Mater Horizon*. 2017;4 (2):206-216.
- Lehner AJ, Wang H, Fabini DH, et al. Electronic structure and photovoltaic application of BiI₃. *Appl Phys Lett.* 2015;107(13): 131109.

[∗] WILEY-

- Hamdeh UH, Nelson RD, Ryan BJ, Bhattacharjee U, Petrich JW, MGJCoM P. Solution-processed BiI₃ thin films for photovoltaic applications: Improved carrier collection via solvent annealing. *Chem Mater.* 2016;28(18):6567-6574.
- Wang L, Huang L, Tan WC, et al. 2D photovoltaic devices: progress and prospects. 2018;2(3):1700294.
- Wei Q, Chen J, Ding P, et al. Synthesis of easily-transferred 2D layered BiI₃ nanoplates for flexible visible-light photo-detectors. *ACS Appl Mater Interfaces*. 2018;10(25):21527-21533.
- Li J, Guan X, Wang C, et al. Synthesis of 2D layered BiI₃ nanoplates, BiI₃/WSe₂ van der Waals heterostructures and their electronic, optoelectronic properties. *Small.* 2017;13(38): 1701034.
- Li J, Guan X, Wang C, et al. Nanoplates: synthesis of 2D layered BiI₃ nanoplates, BiI₃/WSe₂ van der Waals heterostructures and their electronic, optoelectronic properties (small 38/2017). *Small.* 2017;13(38):1701034.
- Bernardi M, Palummo M, Grossman JC. Extraordinary sunlight absorption and one nanometer thick photovoltaics using twodimensional monolayer materials. *Nano Lett.* 2013;13(8):3664-3670.
- Liu Z, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acceptor material: graphene. *Adv Mater*. 2008; 20(20):3924-3930.
- 22. Alamri AM, Leung S, Vaseem M, Shamim A, He J-H. Fully inkjetprinted photodetector using a graphene/perovskite/graphene heterostructure. *IEEE Trans Electron Devices*. 2019;66(6):2657-2661.
- Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG.
 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am Chem Soc. 2015;137(24):7843-7850.
- Tsai H, Nie W, Blancon J-C, et al. High-efficiency twodimensional Ruddlesden–Popper perovskite solar cells. *Nature*. 2016;536(7616):312.
- Smith IC, Hoke ET, Solis-Ibarra D, McGehee MD, Karunadasa HIJAC. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. *Angew Chem.* 2014; 126(42):11414-11417.
- Kagan C, Mitzi D, Dimitrakopoulos CJS. Organic-inorganic hybrid materials as semiconducting channels in thin-film fieldeffect transistors. *Science*. 1999;286(5441):945-947.
- Wang L, Zou X, Lin J, et al. Perovskite/black phosphorus/MoS₂ photogate reversed photodiodes with ultrahigh light on/off ratio and fast response. *ACS Nano*. 2019;13(4):4804-4813.
- Dong R, Lan C, Xu X, et al. Novel series of quasi-2D Ruddlesden–Popper perovskites based on short-chained spacer cation for enhanced photodetection. ACS Appl Mater Interfaces. 2018;10(22):19019-19026.
- Pezeshki A, Shokouh SHH, Nazari T, Oh K, Im SJAM. Electric and photovoltaic behavior of a few-layer α-MoTe₂/MoS₂ dichalcogenide heterojunction. *Adv Mater*. 2016;28(16):3216-3222.
- Tsai M-L, Su S-H, Chang J-K, et al. Monolayer MoS₂ heterojunction solar. *Cells*. 2014;8(8):8317-8322.
- 31. Tributsch HJBBC. The $MoSe_2$ electrochemical solar cell: anodic coupling of electron transfer to $d \rightarrow d$ phototransitions in layer crystals. *Ber Bunsengesellschaft Phys Chem.* 1978;82(2):169-174.

- Zhang L, Yang X, Jiang Q, et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. *Nat Commun.* 2017;8:15640.
- Schmidt P, Binnewies M, Glaum R, Schmidt M. Chemical vapor transport reactions-methods, materials, modeling. *Advanced Topics on Crystal Growth*. London: IntechOpen; 2013.
- 34. Binnewies M, Glaum R, Schmidt M, Schmidt P. *Chemical Vapor Transport Reactions*. Berlin, German: Walter de Gruyter; 2012.
- Kam M, Zhu Y, Zhang D, Gu L, Chen J, Fan Z. Efficient mixed-cation mixed-halide perovskite solar cells by all-vacuum sequential deposition using metal oxide electron transport layer. *Solar RRL*. 2019;3(7):1900050.
- Bi D, Tress W, Dar MI, et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. *Sci Adv.* 2016;2(1): e1501170.
- Fan Z, Razavi H, Do J-w, et al. Three-dimensional nanopillararray photovoltaics on low-cost and flexible substrates. *Nat Mater.* 2009;8(8):648.
- Yu M, Long Y-Z, Sun B, Fan ZJN. Recent advances in solar cells based on one-dimensional nanostructure arrays. *Nanoscale*. 2012;4(9):2783-2796.
- Prasad MD, Sangani LV, Batabyal SK, Krishna MGJC. Single and twinned plates of 2D layered Bil₃ for use as nanoscale pressure sensors. 2018;20(33):4857-4866.
- Gao J, Xu Z, Chen S, Bharathi MS, Zhang YW. Computational understanding of the growth of 2D materials. *Adv Theory Simul.* 2018;1(11):1800085.
- Liu M, Wang RY. Size-dependent melting behavior of colloidal In, Sn, and Bi nanocrystals. *Sci Rep.* 2015;5:16353.
- 42. Collins JB, Levine H. Diffuse interface model of diffusionlimited crystal growth. *Phys Rev B*. 1985;31(9):6119-6122.
- Kolasinski KW. Surface Science: Foundations of Catalysis and Nanoscience. Hoboken, NY: John Wiley & Sons; 2012.
- 44. Waleed A, Tavakoli MM, Gu L, et al. All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. *Nano Lett.* 2017;17(8):4951-4957.
- 45. Yorikawa H, Muramatsu S. Theoretical study of crystal and electronic structures of BiI₃. *J Phys Condens Matter*. 2008;20 (32):325220.
- Trotter J, Zobel T. The crystal structure of SbI3 and BiI3. Z Kristallogr. 1966;123(1–6):67-72.
- Cuña A, Aguiar I, Gancharov A, et al. Correlation between growth orientation and growth temperature for bismuth tri-iodide films. *Cryst Res Technol.* 2004;39(10): 899-905.
- Brandt RE, Kurchin RC, Hoye RL, et al. Investigation of bismuth triiodide (BiI₃) for photovoltaic applications. *J Phys Chem Lett.* 2015;6(21):4297-4302.
- 49. Tiwari D, Alibhai D, Fermin DJ. Above 600 mV open-circuit voltage BiI₃ solar cells. *ACS Energy Lett.* 2018;3(8):1882-1886.
- Repins I, Contreras MA, Egaas B, et al. 19.9%-efficient ZnO/-CdS/CuInGaSe₂ solar cell with 81.2% fill factor. *Prog Photovoltaics Res Appl.* 2008;16(3):235-239.
- Braunger D, Hariskos D, Walter T, Schock H. An 11.4% efficient polycrystalline thin film solar cell based on CuInS₂ with a Cd-free buffer layer. *Sol Energy Mater Sol Cells*. 1996;40(2): 97-102.

- Islam MM, Ishizuka S, Yamada A, et al. CIGS solar cell with MBE-grown ZnS buffer layer. *Sol Energy Mater Sol Cells*. 2009; 93(6–7):970-972.
- Noel NK, Stranks SD, Abate A, et al. Lead-free organicinorganic tin halide perovskites for photovoltaic applications. *Energy Environ Sci.* 2014;7(9):3061-3068.
- 54. Xu M-F, Zhu X-Z, Shi X-B, et al. Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO₂ layer. ACS Appl Mater Interfaces. 2013;5(8):2935-2942.
- 55. Garnett E, Yang PJN. Light trapping in silicon nanowire solar cells. *Nano Lett.* 2010;10(3):1082-1087.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Zhu Y, Zhang Q,

Kam M, et al. Vapor phase fabrication of threedimensional arrayed BiI₃ nanosheets for costeffective solar cells. *InfoMat.* 2019;1–9. <u>https://doi.</u> org/10.1002/inf2.12070